Abstract

Safe and efficient hydrogen storage is a major obstacle for using hydrogen as an energy carrier. Therefore, intensive efforts have been focused on the development of new materials for chemical hydrogen storage. Of particular importance, hydrazine borane (N(2)H(4)BH(3)) is emerging as one of the most promising solid hydrogen carriers due to its high gravimetric hydrogen storage capacity (15.4 wt%) and low molecular weight. Herein, we report metal catalyzed methanolysis of hydrazine borane (N(2)H(4)BH(3), HB) as a fast hydrogen generation system under mild conditions. When trace amounts of nickel(ii) chloride (NiCl(2)) is added to the methanol solution of hydrazine borane ([HB]/[Ni] ≥ 200) the reaction solution releases 3 equiv. of H(2) with a rate of 24 mol H(2) (mol Ni min)(-1) at room temperature. The results reported here also includes (i) identification of the reaction products by using ATR-IR, DP-MS, (1)H and (11)B NMR spectroscopic techniques and the establishment of the reaction stoichiometry, (ii) investigation of the effect of substrate and catalyst concentrations on the hydrogen generation rate to determine the rate law for the catalytic methanolysis of hydrazine borane, (iii) determination of the activation parameters (E(a), ΔH(#), and ΔS(#)) for the catalytic methanolysis of hydrazine borane by using the temperature dependent rate data of the hydrogen generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.