Abstract

The catalytic membrane, which combines the physical barrier and peroxymonosulfate (PMS)/visible light (Vis)-induced catalytic oxidation functionalities while minimizing biofouling, exhibits great promise as a material for the removal of persistent organic pollutants from wastewater. In this study, three catalytic membranes composed of 2D/2D hybrid g-C3N4/kaolinite with nitrogen vacancies and modified with different iron species (γ-FeOOH nanosheets, Fe2O3 quantum dots, and Fe single atoms) were prepared via vacuum filtration. Evaluation of the catalytic performance demonstrated that γ-FeOOH nanosheets-modified sample exhibited a relatively higher water flux (258.13 L m-2 h-1). In contrast, Fe single atom-modified sample achieved improved bisphenol A removal efficiency (97.39%) under the PMS/Vis synergetic system. Interestingly, the Fe2O3 quantum dots-modified sample exhibited the highest rate constant based on the retention time. Furthermore, the Fe single atom-modified sample showed consistent removal of bisphenol A, reaching nearly 100% during continuous-flow operation for 180 min, while maintaining a flux of approximately 200 L m-2 h-1. Quenching experiments suggested that •O2−, 1O2, and h+ were the most important oxidizing species involved in the reaction of the three membranes. Statistical analysis indicated that variations in the average pore size of the membranes were key factors influencing the catalytic activity. Overall, this study offers an in-depth insight into the systematic and quantitative assessment of 2D/2D hybrid g-C3N4/layered clay-based catalytic membranes for wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.