Abstract

As(III) is much more toxic than As(V) while shows apparently lower affinity at minerals surfaces. Oxidation of As(III) to As(V) by H2O2 over anatase surface provides an attractive avenue for pollution control, and the chemocatalytic and photocatalytic mechanisms are unraveled by means of the DFT + D3 approach. Impacts of anatase as support, O2c/O3c vacancy, photoirradiation are addressed as well. As(III) oxidation under various reaction conditions leads to As(V) through dual electron transfers, while energy barriers differ substantially and decline as 1.80 (direct oxidation) > 1.35 (anatase as support) > 1.24 (O3c vacancy) > 0.50 (chemocatalysis) > 0.28 (photocatalysis) ≥ 0.26 (O2c vacancy) eV. Anatase as support promotes the reaction through bonding with H2O2/As(OH)3 and electron transfers, and its close participation during chemocatalysis produces the TiOOH active site that causes As(III) oxidation to proceed facilely under ambient circumstances. TiOOH exists in two forms (monodentate and bidentate mononuclear) and is critical for chemocatalysis, while its destruction for O3c vacancy exhibits strongly adverse effects to As(III) oxidation. Photoirradiation readily generates the OH• radicals, and corresponding mechanism is plausible while less preferred than the newly posed mechanism based on the Ti(H2O2) active site. Synergism among a number of surface atoms conduces to the superior activity for O2c vacancy and photocatalysis. Results provide a comprehensive understanding for As(III) oxidation to As(V) by H2O2, and facilitate catalysts design for As(III) oxidation that alleviates environmental pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.