Abstract

Adenosine 5'-monophosphate (AMP) deaminase from baker's yeast is an allosteric enzyme containing a single AMP binding site and two ATP regulatory sites per polypeptide [Merkler, D. J., & Schramm, V. L. (1990) J. Biol Chem. 265, 4420-4426]. The enzyme contains 0.98 +/- 0.17 zinc atom per subunit. The X-ray crystal structure for mouse adenosine deaminase shows zinc in contact with the attacking water nucleophile using purine riboside as a transition-state inhibitor [Wilson, D. K., Rudolph, F. B., & Quiocho, F. A. (1991) Science 252, 1278-1284]. Alignment of the amino acid sequence for yeast AMP deaminase with that for mouse adenosine deaminase demonstrates conservation of the amino acids known from the X-ray crystal structure to bind to the zinc and to a transition-state analogue. On the basis of these similarities, yeast AMP deaminase is also proposed to use a Zn(2+)-activated water molecule to attack C6 of AMP with the displacement of NH3. The pKm and pKi profiles for AMP and a competitive inhibitor overlap in a bell-shaped curve with pKa values of 7.0 and 7.4. This pattern is characteristic of a rapid equilibrium between AMP and the enzyme, thus confirming the rapid equilibrium random kinetic patterns [Merkler, D. J., Wali, A. S., Taylor, J., Schramm, V. L. (1989) J. Biol. Chem. 264, 21422-21430]. The Vmax of the reaction requires one unprotonated and one protonated group with pKa values of 6.4 +/- 0.2 and 7.7 +/- 0.3, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call