Abstract

2-Hydroxy-6-keto-nona-2,4-diene 1,9-dioic acid 5,6-hydrolase (MhpC) from Escherichia coli catalyses the hydrolytic cleavage of the extradiol ring fission product on the phenylpropionate catabolic pathway and is a member of the alpha/beta hydrolase family. The catalytic mechanism of this enzyme has previously been shown to proceed via initial ketonization of the dienol substrate (Henderson, I. M. J., and Bugg, T. D. H. (1997) Biochemistry 36, 12252-12258), followed by stereospecific fragmentation. Despite the implication of an active site serine residue in the alpha/beta hydrolase family, attempts to verify a putative acyl enzyme intermediate by radiochemical trapping methods using a (14)C-labeled substrate yielded a stoichiometry of <1% covalent intermediate, which could be accounted for by nonenzymatic processes. In contrast, incorporation of 5-6% of two atoms of (18)O from H(2)(18)O into succinic acid was observed using the natural substrate, consistent with the reversible formation of a gem-diol intermediate. Furthermore, time-dependent incorporation of (18)O from H(2)(18)O into the carbonyl group of a nonhydrolysable analogue 4-keto-nona-1,9-dioic acid was observed in the presence of MhpC, consistent with enzyme-catalyzed attack of water at the ketone carbonyl. These results favor a catalytic mechanism involving base-catalyzed attack of water, rather than nucleophilic attack of an active site serine. The implication of this work is that the putative active site serine in this enzyme may have an alternative function, for example, as a base.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.