Abstract

The catalytic mechanism of cyclodextrin glycosyltransferase, a member of the α-amylase family, is reviewed. The focus is put on the bond cleavage mechanism, the nature of the transition state and of the covalent intermediate, and on the stereo-electronic and lateral protonation contributions to catalysis. The functions in catalysis of the absolutely conserved residues in this family are discussed. Finally, the fascinating capability of cyclodextrin glycosyltransferase to produce cyclodextrins from linear starch oligosaccharide chains is reviewed, together with protein engineering studies to modify the enzyme’s product specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.