Abstract

We have previously reported the identification of CghA, a proposed Diels-Alderase responsible for the formation of the bicyclic octalin core of the fungal secondary metabolite Sch210972. Here we show the crystal structure of the CghA-product complex at a resolution of 2.0 Å. Our result provides the second structural determination of eukaryotic Diels-Alderases and adds yet another fold to the family of proteins reported to catalyse [4 + 2] cycloaddition reactions. Site-directed mutagenesis-coupled kinetic characterization and computational analyses allowed us to identify key catalytic residues and propose a possible catalytic mechanism. Most interestingly, we were able to rationally engineer CghA such that the mutant was able to catalyse preferentially the formation of the energetically disfavoured exo adduct. This work expands our knowledge and understanding of the emerging and potentially widespread class of natural enzymes capable of catalysing stereoselective Diels-Alder reactions and paves the way towards developing enzymes potentially useful in various bio/synthetic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.