Abstract

Natural biological materials are formed by self-assembly processes and catalyze a myriad of reactions. Here, we report a programmable molecular assembly of designed synthetic polymers with engineered bacterial spores. This self-assembly process is driven by dynamic covalent bond formation on spore surface glycan and yields macroscopic materials that are structurally stable, self-healing, and recyclable. Molecular programming of polymer species shapes the physical properties of these materials while metabolically dormant spores allow for prolonged ambient storage. Incorporation of spores with genetically encoded functionalities enables operationally simple and repeated enzymatic catalysis. Our work combines molecular and genetic engineering to offer scalable and programmable synthesis of robust materials for sustainable biocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call