Abstract

Cyclopentadienes are scaffolds in organometallic chemistry, synthetic organic chemistry, and catalysis. We herein describe a regioselective Lewis-acid-catalyzed method for the synthesis of highly functionalized cyclopentadienes incorporating electronically and sterically diverse subunits. Our experimental and theoretical investigations support a mechanism that is related to catalytic carbonyl-olefin metathesis reactions wherein Lewis-acid-catalyzed cycloadditions between carbonyl and alkene functionalities afford reactive oxetane intermediates. However, in lieu of a [2+2]-cycloreversion, stepwise oxetane fragmentation to intermediate carbocations results in the formation of functionalized cyclopentadienes via interrupted carbonyl-olefin metathesis. This work provides insights into the design of catalytic carbonyl-olefin metathesis reactions of aliphatic ketone substrates as stepwise oxetane fragmentation was previously only reported as a competing reaction pathway for aryl ketones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.