Abstract

BackgroundTopoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis.ResultsHere we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1) inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1.ConclusionThe results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations.

Highlights

  • Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks

  • Submicromolar activity with an IC50 of 432 ± 30 nM in the ATPase assay was obtained with the purine analogue 3 that is substituted with an ethyl group at position C6, a tert-butyl group at position N6 and containing a benzothiazole group in position N2

  • In this functional assay Quinoline aminopurine compound 1 (QAP 1) was found to inhibit DNA decatenation with a mean IC50 of 770 nM (Figure 1F, G), which was in the range of the values measured with ICRF-193 [27], a non-ATP competitive catalytic inhibitor of topoisomerase II and most potent bisdioxopiperazine described to date

Read more

Summary

Introduction

Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Topoisomerase II is a homodimer that clamps onto two DNA double strands upon ATP binding to the amino-terminal ATPase domains. Tumor cell death is triggered by the substantial DNA damage elicited by the so-called topoisomerase II poisons. The use of topoisomerase II poisons as cancer chemotherapy is limited by a narrow therapeutic window as concomitant damage to healthy cells and tissues is almost inevitable [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call