Abstract

Surface ignition and extinction of hydrogen/air mixtures on platinum surfaces are modeled using a detailed surface kinetic mechanism and transport phenomena. It is shown that the platinum surface can be poisoned by different adsorbates, and the dynamic process of catalytic ignition and extinction is associated with a phase transition from one poisoning species to another. For certain temperatures, multiple poisoned states of the surface coexist. Comparison of simulations with experiments is conducted, and it is shown that the self-inhibition of hydrogen catalytic ignition is caused by poisoning of platinum by atomic hydrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.