Abstract

Humins are common undesirable sideproducts during many acid-catalyzed reactions in renewable biomass platform conversion. However, few studies have been reported to the efficient utilization of humins. For the first time, the selective catalytic conversion of biomass-derived humins into cyclic hydrocarbons with high conversion rate and selectivity is presented using a home-made Ru/W-P-Si-O bifunctional catalyst. The multistage polymerization structure of humins was studied through controlled experiments. Results show that the CC bond network can be efficiently depolymerized at a mild reaction temperature of 340–380 °C, catalyzed by the cooperative catalysis of nano-Ru particles and porous strong Lewis solid acid. Particularly, 95.4% conversion of humins was achieved under the optimal condition with up to 88.3% yield of cyclic hydrocarbons. The detailed composition after liquefaction was also analyzed. This study paves the way for the efficient production of cyclic and aromatic hydrocarbons from furan-derived humin polymer through Lewis acid-catalyzed Diels–Alder reactions between furan rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.