Abstract

Hydrolysis of sodium borohydride (NaBH4) offers substantial applications in the production of hydrogen but requires an inexpensive catalyst. Herein, silica (SP) and phosphorylated silica (SP-PA) are used as a catalyst for the generation of hydrogen from NaBH4 hydrolysis. The catalyst is prepared by sol-gel route synthesis by taking tetraethyl orthosilicate as the precursor of silica whereas phosphoric acid served as the gelation and phosphorylating agent. The prepared catalyst is characterized by FT-IR spectroscopy, XRD, SEM, and EDAX. The hydrogen generation rate at SP-PA particles (762.4mLmin-1g-1) is higher than that of silica particles (133mLmin-1g-1 of catalyst). The higher catalytic activity of SP-PA particles might be due to the acidic functionalities that enhance the hydrogen production rate. The kinetic parameters(activation energy and pre-exponential factor) are calculated from the Arrhenius plot and the thermodynamic parameters (enthalpy, entropy, and free energy change) are evaluated using the Erying plot. The calculated activation energy for NaBH4hydrolysis at SP-PA catalyst is 29.92kJ.mol-1 suggesting the high catalytic activity of SP-PA particles. The obtained entropy of activation (ΔS‡ = - 97.75 JK-1) suggested the Langmuir-Hinshelwood type associative mechanism for the hydrolysis of NaBH4at SP-PA particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.