Abstract

The catalytic hydrogenolysis of a typical model compound of mulching film waste, polyethylene, was investigated as a potential way to improve economic efficiency of mulching film recycling. Nickel-based heterogeneous catalysts are proposed for polyethylene hydrogenolysis to produce liquid hydrocarbons. Among catalysts supported on various carriers, Ni/SiO2 catalyst shows the highest activity which may due to the interactions between nickel and silica with the formation of nickel phyllosilicate. As high as 81.18% total gasoline and diesel range hydrocarbon was obtained from the polyethylene hydrogenolysis at relatively mild condition of 280 °C, and 3 MPa cold hydrogen pressure. The result is comparable to what have been reported in previous studies using noble metal catalysts. The gasoline and diesel range hydrocarbon are n-alkanes with a distribution at a range of C4–C22. The gas products are primarily CH4 along with a small amount of C2H6 and C3H8. High yield of CH4 as much as 9.68% was observed for the cleavage of molecule occurs along the alkane chain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call