Abstract

We prepared a new class of anion-exchange-resin supported Pd catalysts for efficient hydrodechlorination of triclosan in water. The catalysts were prepared through an initial ion-exchange uptake of PdCl42− and subsequent reduction of Pd(II) to Pd(0) nanoparticles at ambient temperature. Two standard strong-base anion exchange resins (IRA-900 and IRA-958) with different matrices (polystyrene and polyacrylic) were chosen as the supports. SEM and TEM images showed that Pd(0) nanoparticles were evenly attached on the resin surface with a mean size of 3–5 nm. The resin supported Pd catalysts (Pd@IRA-900 and Pd@IRA-958) were able to facilitate rapid and complete hydrodechlorination of triclosan. At a Pd loading of 2.0 wt.%, the observed pseudo first-order rate constant (kobs) was 1.25 ± 0.06 and 1.6 ± 0.1 L/g/min for Pd@IRA-900 and Pd@IRA-958, respectively. The catalysts were more resistant to Cl− poisoning and natural organic matter fouling than other supported-Pd catalysts. The presence of 10 mM NaCl suppressed the kobs value by 31% and 23% for Pd@IRA-900 and Pd@IRA-958, whereas the presence of humic acid at 30 mg/L as TOC lowered the rates by 28% and 27%, respectively. The better performance of Pd@IRA-958 was attributed to the polymeric matrix properties (i.e., hydrophobicity, pore size, and surface area) as well as Pd particle size. GC/MS analyses indicated that very low concentrations of chlorinated intermediates were detected in the early stage of the hydrodechlorination process, with 2-phenoxyphenol being the main byproduct. The catalysts can be repeatedly used in multiple operations without significant bleeding. The catalysts eliminate the need for calcination in preparing conventional supported catalysts, and the resin supports conveniently facilitate control of Pd loading and material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call