Abstract

Currently, the conversion of biomass to produce high-valued biofuels such as biodiesel and bio-jet fuel has attached booming interests, when used for partial replacement of petroleum fuels in different ratios is a promising solution due to the problem of depleting petroleum reserves and environmental purposes. Non-edible Jatropha oil can be transformed to biofuel when subjected to were hydrocracking at hydrogen pressure using an activated natural clay as a catalyst in a high pressure batch reactor. The type of product and its quality and quantity depend on the process conditions such as reaction time, temperature, and catalyst type, form, and amount. The present work aims to study the hydrocracking process of Jatropha oil at different operating conditions. The catalyst is characterized using SEM, FTIR, XRF, and XRD. The effect of process conditions variation have been studied and discussed. The results showed the highest yield of 40% bio-jet fuel was achieved at a temperature of 350 °C, H2 pressure of 4 bar, and reaction time of 18 min. the bio-jet fuel products were tested and their specifications were conformed to ASTM D1655 specifications, viz the freezing point (−56 °C), the flash point (53 °C), and existent gum content (5.9 mg/100 ml).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call