Abstract
In this paper, we report BF3 ⋅ OEt2 as a catalyst to shuttle equivalents of HF from a fluoroalkane to an alkyne. Reactions of terminal and internal aliphatic alkynes led to formation of difluoroalkane products, while diarylalkynes can be selectively converted into fluoroalkenes. The method tolerates numerous sensitive functional groups including halogen, protected amine, ester and thiophene substituents. Mechanistic studies (DFT, probe experiments) suggest the catalyst is involved in both the defluorination and fluorination steps, with BF3 acting as a Lewis acid and OEt2 a weak Lewis base that mediates proton transfer. In certain cases, the interconversion of fluoroalkene and difluoroalkane products was found to be reversible. The new catalytic system was applied to demonstrate proof-of-concept recycling of poly(vinylidene difluoride).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.