Abstract

MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10-19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.