Abstract
Carbon nanofibers (CNF) are non-microporous graphitic materials with a high surface area (100–200 m 2/g), high purity and tunable surface chemistry. Therefore the material has a high potential for use as catalyst support. However, in some instances it is claimed that the low density and low mechanical strength of the macroscopic particles hamper their application. In this study we show that the bulk density and mechanical strength of CNF bodies can be tuned to values comparable to that of commercial fluid-bed and fixed-bed catalysts. The fibers were prepared by the chemical decomposition of CO/H 2 over Ni/SiO 2 catalysts. The resulting fibers bodies (1.2 μm) were replicates of the Ni/SiO 2 bodies (0.5 μm) from which they were grown. The bulk density of CNF bodies crucially depended on the metal loading in the growth catalyst. Over 5 wt% Ni/SiO 2 low density bodies (0.4 g/ml) are obtained while 20 wt% Ni/SiO 2 leads to bulk densities up to 0.9 g/ml with a bulk crushing strength of 1.2 MPa. The 20 wt% catalysts grow fibers with diameters of ∼22 nm, which grow irregularly in space, resulting in a higher entanglement and a concomitant higher density and strength as compared to the thinner fibers (∼12 nm) grown from 5 wt% Ni/SiO 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.