Abstract
The catalytic effect of the most important neurotransmitter, acetylcholine (ACh), which, like cationic surfactants (S+), is able to form mixed microaggregates with hydroperoxides (ROOH) in organic media and accelerate ROOH decomposition into free radicals, has been considered. Chemisorbed on solid supports (cellulose, sodium montmorillonite) ACh as well as S+ catalytically decomposes ROOH and initiates radical chain oxidation and polymerization from the surface. A comparison of radical generation rates (Wi) by mixtures of ACh with cumyl and tert-butyl hydroperoxides in n-decane and chlorobenzene showed that Wi is relatively lowered in the presence of an aromatic fragment in a solvent or hydroperoxide. Phosphatidylcholine (РС) is a zwitterionic surfactant in which a choline cation is bound to a phosphate group. Non-transition metal ions Ca(II) and Mg(II) break the zwitterionic bond and convert РС into a cationic surfactant able to catalyze the radical decomposition of ROOH. The slowing effect of a moderate magnetic field of 0.157 T on the radical’s generation rate in mixtures of ROOH with S+, ACh, and PC treated with Ca(II) and Mg(II) salts was established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.