Abstract

In this work we examine a series of Mg-Al mixed oxides derived from hydrotalcite-like precursors prepared with different Mg/Al ratios i.e. Mg/Al = 2, 3, and 4, as catalysts for the catalytic fast pyrolysis (CFP) of wheat straw. Characterization of the Mg-Al mixed oxides by N2 adsorption, X-ray diffraction and CO2 temperature programmed desorption revealed a decrease in the surface area and a higher number and proportion of basic sites corresponding to an increase in the Mg concentration in the hydrotalcite precursors. The Mg-Al mixed oxides derived from hydrotalcite precursors are active materials for the catalytic fast pyrolysis of biomass. The removal of oxygen during the catalytic fast pyrolysis of biomass over the Mg-Al-mixed oxides depends on their Mg/Al ratio, and an increase in gas production with a strong improvement in the decarboxylation capacity as the Mg concentration in the mixed oxides decreased, was observed. The Al-Mg mixed oxide catalyst with the lowest Al concentration (Mg/Al = 4.0) maintained the deoxygenation and bio-oil energy yield at levels comparable to those achieved over an acidic ZSM-5 zeolite widely used in the CFP of biomass. A moderate increment in ketone formation for the catalyst with Mg/Al = 4.0 suggests that these basic materials promote the aldol condensation and ketonization of pyrolytic compounds by removing the oxygen in the form of H2O and CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.