Abstract

When a viologen-linked Mn(III)porphyrin complex with a short methylene-chain, in which a viologen is covalently linked by the methylene-chain into one phenyl group of 5,10,15,20-tetraphenylporphyrinatomanganese(III)chloride (Mn(III)(tpp)Cl), was used as a catalyst for a monooxygenation of cyclohexene in an air-equilibrated acetonitrile solution containing insoluble zinc powder as a reductant, more cyclohexene oxide was obtained as a single product than when Mn(tpp)Cl was used as a catalyst. Benzoic acid as a cleaving reagent of the dioxygen double-bond and 1-methylimidazole as a ligand to Mn porphyrin were further contained in the reaction mixture. This result implies that the viologen moiety in the viologen-linked Mn(III)porphyrin acted effectively as a mediator for electron transfer from zinc powder to the Mn(III)porphyrin moiety in the epoxidation cycle activating molecular dioxygen reductively. Though Mn(tpp)Cl was remarkably demetallated by H + ion from benzoic acid during the epoxidation reaction in the mixed system of Mn(III)(tpp)Cl and viologen, the demetallation of the viologen-linked Mn porphyrin with the short methylene-chain was partly prevented because the reduction of a Mn(II)porphyrin-dioxygen adduct was easily caused by fast intramolecular electron-transfer between the two moieties of the viologen and the Mn porphyrin, proceeding the epoxidation cycle smoothly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.