Abstract
As saturated heterocyclic building blocks become increasingly popular in medicinal chemistry and drug discovery programs, expansion of the synthetic toolkit to novel stereofunctionalized heterocycles is a priority. Herein, we report the development of a palladium-catalyzed decarboxylative asymmetric allylic alkylation reaction to access a broad range of enantioenriched α-difunctionalized 5- and 6-membered sulfones from easily accessible racemic starting materials. The allylic alkylation step was found to occur with high levels of enantioselectivity as a result of a palladium-mediated dynamic kinetic resolution of E/Z enolate intermediates. This methodology paves the way to hitherto unexplored stereodefined cyclic sulfones for medicinal chemistry applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.