Abstract

A catalytic, enantioselective, Lewis base-catalyzed α-sulfenylation of silyl enol ethers has been developed. To avoid acidic hydrolysis of the silyl enol ether substrates, a sulfenylating agent that did not require additional Brønsted acid activation, namely N-phenylthiosaccharin, was developed. Three classes of Lewis bases—tertiary amines, sulfides, and selenophosphoramides—were identified as active catalysts for the α-sulfenylation reaction. Among a wide variety of chiral Lewis bases in all three classes, only chiral selenophosphoramides afforded α-phenylthio ketones in generally high yield and with good enantioselectivity. The selectivity of the reaction does not depend on the size of the silyl group but is highly sensitive to the double bond geometry and the bulk of the substituents on the double bond. The most selective substrates are those containing a geminal bulky substituent on the enoxysilane. Computational analysis revealed that the enantioselectivity arises from an intriguing interplay among sterically guided approach, distortion energy, and orbital interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.