Abstract

Enantioselective difunctionalization of alkenes offers a straightforward means for the rapid construction of enantioenriched complex molecules. Despite the tremendous efforts devoted to this field, enantioselective aminative difunctionalization remains a challenge, particularly through an electrophilic addition fashion. Herein, we report an unprecedented approach for the enantioselective aminative difunctionalization of alkenes via copper-catalyzed electrophilic addition with external azo compounds as nitrogen sources. A series of valuable cyclic hydrazine derivatives via either [3 + 2] cycloaddition or intramolecular cyclization have been achieved in high chemo-, regio-, enantio-, and diastereoselectivities. In this transformation, a wide range of functional groups, such as carboxylic acid, hydroxy, amide, sulfonamide, and aryl groups, could serve as nucleophiles. Importantly, a new cyano oxazoline chiral ligand was found to play a crucial role in the control of enantioselectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call