Abstract
A general catalytic asymmetric alkylative aldol reaction is described as a new entry to the catalytic asymmetric multicomponent reaction (CAMCR). Highly functionalized delta-lactones were produced in the presence of a catalytic amount of the Cu(OAc)2-DIFLUORPHOS complex through three-component assembly of dialkylzincs, allenic esters, and unactivated ketones. This CAMCR constructs two C-C bonds and one tetrasubstituted chiral center simultaneously. Conjugate addition of alkylcopper species to an allenic ester produced highly active copper enolate in situ, and the successive asymmetric aldol addition to ketones followed by lactonization afforded the desired products. The addition of MS4A and Lewis base (Ph2S=O, DMSO, or HMPA) is important for obtaining a high yield, with suppression of the undesired alpha-addition pathway. Control/crossover experiments suggest that the addition of a Lewis base facilitated the retro-aldol reaction of the alpha-adducts (proofreading effect). The ketone and copper enolate generated through the retro-aldol reaction were converted to the desired lactone through the gamma-aldol pathway, which was trapped by irreversible lactone formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.