Abstract

Cobalt hydroxide, a stable and efficient catalyst prepared in the laboratory, has been successfully used in the decomposition of ozone and trace quantities of p-chloronitrobenzene (pCNB) in water. The cobalt hydroxide was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the Brunauer-Emmet-Teller (BET) method. The decomposition rate of aqueous ozone was increased by 1.527 times in the presence of cobalt hydroxide. Increasing the catalyst loading from 0 to 500 mg/L increased the removal efficiency of pCNB from 59% to 99%. The catalyst morphology and its composition were found to be unaltered after the catalytic reaction. After five successive recycles, the catalyst remained stable in the catalytic ozonation of pCNB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call