Abstract

The role played by catalysts in solid fuel reactivity toward oxygen as a viable method for reducing toxic combustion emissions was studied. Catalyst (1 wt % Pd–Sn/alumina) treated and untreated solid fuels were analyzed using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) coupled with a gas detection system at heating rates of 20–40 °C/min and airflow rates of 30–100 mL/min. The relative CO emission factors, NOx, CH4, energy output, and combustion efficiency were determined as well as values of the activation energy (Ea) and pre-exponential factor (A) for the oxidation of the solid fuels. Results showed that the catalyst treatment enhanced the energy output by more than 22% and reduced CO emission factors by up to 87%. The temperature for release of nitrogen compounds was considerably reduced; however, the amounts produced were not impacted. The combustion efficiency was also improved by up to 60%. In terms of reactivity, catalyst treatment lowered the Ea for oxidation especially at 0.2 ≤ α ≤ 0.8. Catalyst treated samples had more free active sites on their surfaces, which decreased at temperatures of >500 °C possibly due to thermal deactivation of the catalyst. This is a viable method for minimizing toxic emissions from solid fuel combustion and enhancing energy output for domestic and industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.