Abstract

The detailed catalytic influence of minerals on solid biomass in oxy-fuel combustion is yet to be fully understood. The catalytic influence of metal sulfates on a mineral-free, cellulose-based model biomass was investigated during slow and high heating in air and oxy-fuel combustion. Measurements were performed in a thermogravimetric setup in air with slow heating rates and in a flat-flame burner in oxy-fuel combustion atmosphere with high heating rates. Temperature-programmed experiments identified the catalytic activity scale of Fe > K > Na > Mg ∼ Ca in synthetic air (20% O2/He) for the sulfates. The highly active metals Fe and K were chosen for more detailed investigations in oxy-fuel combustion experiments using an additional loading of Mg as less-volatile mineral tracer. Samples doped with Fe and Mg (FeMg-MH) exhibited lower thermal stability and higher particle combustion temperatures in the flat-flame burner compared with the undoped model fuel, while the combination of K and Mg (KMg-MH) decreased the particle combustion temperature drastically during oxy-fuel combustion. X-ray diffraction patterns acquired between 25 and 800 °C showed that in FeMg-MH the mineral phases FeSO4 and MgSO4 were still separated and independently active, while the addition of MgSO4 to K2SO4 formed the stable mineral phase Langbeinite inhibiting the K mobility. The influence of metal chlorides and nitrates was also investigated by slow heating rate TGA experiments showing an overlapping of metal salts decomposition and carbon devolatilization and oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.