Abstract

This study elucidates the application of Pd nanoparticles as catalysts of electroless copper deposition and their catalytic effect on the deposition kinetics and microstructure in an electroless copper bath. Quartz crystal microgravimetry (QCM) and high-resolution field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDX) demonstrated that the kinetic changes associated with electroless copper deposition (ECD) comprised two stages—the incubation period and the acceleration period. In the incubation period, small copper particles were deposited. In the acceleration period, the ECD rate increased rapidly and continuously conducting films with large grains were formed. Leaner sweep voltammetry (LSV) and mixed potential theory (MPT) were applied to examine the catalytic powers of the prepared Pd nanoparticles and the related electrochemical kinetics in the ECD bath.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.