Abstract

AbstractCarbon materials have been widely studied and applied as electrocatalysts in recent years due to their advantages of good stability, adjustable pores, high specific surface area, and excellent electrical conductivity. Graphene, carbon nanotubes, and mesoporous carbon are commonly used in the preparation of electrocatalysts, which are good composite matrix materials. Load different active species on the carbon nanomaterial to increase the electron asymmetry density of carbon nanomaterials or break the electrical neutrality of the carbon surface to form more adsorption active sites, which is also more conducive to the free movement of sp2 hybridized π electrons on the carbon surface, so that the electronic distribution and spatial structure of the composite material are changed. In the process of synthesizing carbon-based nanomaterials, these changes will cause different catalytic effects between the substrates and the supported materials. The catalytic effect can not only change the size of supported-materials and the coordination of the chemical environment, but also use the interaction between supported-materials and the substrates as a bridge for the electrons theoretical study of heterogeneous catalytic, and can also use the structural characteristics to form a local electric field to promote transmission. Therefore, the electrocatalytic activity of carbon-based nanomaterials can be effectively improved. In this chapter, several catalytic effects of carbon-based nanomaterials have been reviewed, including confinement effect, interface engineering effect, and electric field effect, and mechanisms of different catalytic effects and electrocatalytic applications have also been systematically discussed.KeywordsCarbon-based nanomaterialsConfinement effectInterface engineering effectElectric field effect

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call