Abstract

Pyrolysis is a promising technology for recycling organic materials from waste printed circuit boards (WPCBs). Nevertheless, the generated organic bromides are toxic and urgently needed to be removed. The coexisting copper (Cu) of WPCBs has potential performance on debromination. However, the catalytic effect and mechanism of Cu on pyrolysis process and products were still unclear. To clarify the in-situ catalysis of Cu, the analysis on kinetics and pyrolysis products was performed. The results showed that Cu can change the mechanism function of pyrolysis, which reduced the apparent activation energy (Ea). The mechanism function of Cu-coated WPCBs was obtained by Šesták-Berggren model and expressed as: dαdt=1.65×107×1-α-1.30α6.09-ln1-α-6.03exp⁡-202.45KJ/molRT. Product analysis suggested that Cu promoted the conversion of organic bromides to Br2 and HBr. During the process of pyrolysis, bromide atoms interacted with Cu to form coordination compound, which can weaken the strength of C-Br bond and generate bromide free radical (Br*). Besides, Cu can promote the conversion of aromatic-Br to Br2 as the catalyst for Ullmann cross-coupling reaction. Therefore, the presence of Cu was beneficial to pyrolysis. This work provided the theoretical basis for the improvement and application of pyrolysis technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call