Abstract

Plasmonic circular dichroism(CD) has been emerged as a promising signal for building biosensors due to its high sensitivity and specificity. In the past years, DNA nanotechnology enabled diverse chiral plasmonic devices, which can response biomolecules and then generate dynamic plasmonic CD signals at the visible range. Although some of them have been successfully employed as biosensors, the detection sensitivity is still relatively low. Herein we report a chiral plasmonic sensor with an improved detection sensitivity by integrating catalytic hairpin assembly circuits into DNA origami structures. We tested two kinds of tumor marker RNA sequences as detection targets and it turns out that the detection limit is below 10 pmol/L, improving one order of magnitude compared to previous work. The chiral plasmonic sensor with internal signal amplification circuits can stimulate a variety of smart nano-sensors for biological detection and offer a promising strategy for pathogenic RNA detection with plasmonic CD output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.