Abstract
Summary Toward addressing mercury contamination, DNA-functionalized microtubes that can serve as the next generation of self-propelled catalytic micromachines to remove Hg(II) from aqueous solution are described. The microtubes, prepared via the electrodeposition method, are composed of an inner platinum catalytic surface for self-propulsion and a gold outer surface for functionalization with DNA. The highly specific and strong binding of Hg(II) to T-T mismatched pairs in DNA sequences confers the adsorption capability for Hg(II) on the microtubes. The efficient self-propulsion of these micromachines results in enhanced removal of Hg(II). The autonomous micromotor-based strategy provides a dynamic adsorption platform for decontamination of mercury-polluted water bodies.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.