Abstract
Catalytic reduction of N2 to NH3 by a Ti complex has been achieved, thus now adding an early d‐block metal to the small group of mid‐ and late‐d‐block metals (Mo, Fe, Ru, Os, Co) that catalytically produce NH3 by N2 reduction and protonolysis under homogeneous, abiological conditions. Reduction of [TiIV(TrenTMS)X] (X=Cl, 1A; I, 1B; TrenTMS=N(CH2CH2NSiMe3)3) with KC8 affords [TiIII(TrenTMS)] (2). Addition of N2 affords [{(TrenTMS)TiIII}2(μ‐η1:η1‐N2)] (3); further reduction with KC8 gives [{(TrenTMS)TiIV}2(μ‐η1:η1:η2:η2‐N2K2)] (4). Addition of benzo‐15‐crown‐5 ether (B15C5) to 4 affords [{(TrenTMS)TiIV}2(μ‐η1:η1‐N2)][K(B15C5)2]2 (5). Complexes 3–5 treated under N2 with KC8 and [R3PH][I], (the weakest H+ source yet used in N2 reduction) produce up to 18 equiv of NH3 with only trace N2H4. When only acid is present, N2H4 is the dominant product, suggesting successive protonation produces [{(TrenTMS)TiIV}2(μ‐η1:η1‐N2H4)][I]2, and that extruded N2H4 reacts further with [R3PH][I]/KC8 to form NH3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.