Abstract

A series of novel, intramolecular Zr(IV)/P frustrated Lewis pairs (FLPs) based on cationic zirconocene fragments with a variety of ancillary cyclopentadienyl and 2-phosphinoaryloxide (−O(C6H4)PR2, R = tBu and 3,5-CF3-(C6H3)) ligands are reported and their activity as catalysts for the dehydrocoupling of dimethylamine–borane (Me2NH·BH3) assessed. The FLP system [(C9H7)2ZrO(C6H4)PtBu2][B(C6F5)4] is shown to give unprecedented turnover frequencies (TOF) for a catalyst based on a group 4 metal (TOF ≥ 600 h–1), while also proving to be the most efficient FLP catalyst reported to date. The mechanism of this reaction has been probed using analogous intermolecular Zr(IV)/P FLPs, permitting deconvolution of the reactions taking place at both the Lewis acidic and basic sites. Elucidation of this mechanism revealed an interesting cooperative two-cycle process where one cycle is FLP mediated and the other, a redistribution of a linear diborazane intermediate, relies solely on the presence of a Zr(IV) Lewis acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.