Abstract

Covalent immobilization of propyl sulfonic acid groups on the surface of magnetic graphene oxide is reported as an efficient magnetically recoverable solid acid catalyst for the conversion of fructose into 5-hydroxymethylfurfural (5-HMF). The obtained nanocomposite has advantages of both graphene oxide (high surface area) and magnetic nanoparticles (fast and facile separation by a magnet). The numerous reaction parameters including solvent, reaction time, temperature, and amount of catalyst were optimized to attain maximum yield of 5-HMF. The results revealed that fructose could be effectively transformed into 5-HMF with a yield of 87% under the optimized reaction conditions. The catalyst could be magnetically separated from the reaction mixture. Moreover, the catalyst exhibited high stability and could be reused for at least five times without a discernible loss of catalytic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.