Abstract

Nitrogen doping could improve the catalytic performance of carbon materials, in which the nitrogen configuration could be used as active sites for peroxymonosulfate (PMS) activation. Herein, this paper studied how to turn waste to “treasure” by agriculture waste pomelo peel to prepare nitrogen-doped biochar and successfully applied it to advanced oxidation field. The effects of the sodium bicarbonate (NaHCO3), melamine, and pyrolysis temperature on the catalytic activity of biochar for the removal of sulfamethoxazole (SMX) were investigated. The optimized nitrogen-doped biochar (C−N−M 1:3:4) possessed high specific surface area (SSA, 738 m2/g) and high level of nitrogen doping (nitrogen content 13.54 at%). Accordingly, it exhibited great catalytic performance for PMS activation to remove SMX antibiotic, and 95% of SMX was removed within 30 min. High catalytic activity of C−N−M 1:3:4 was attributed to rich defects, carbonyl group, high content of graphitic N and pyrrolic N, and large SSA, in which non-radical oxidation process based on singlet oxygen (1O2) and electron transfer contributed to the SMX degradation. The prepared nitrogen-doped biochar possessed high stability and reusability and the removal efficiency of SMX still reached 80% after four cycles. Additionally, the phytotoxicity assay indicated that the toxicity of degradation intermediates was obviously decreased in the PMS/ C−N−M 1:3:4 system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.