Abstract
The thermal degradation of plastic polymers into fuel oil over mesoporous silica (KFS-16) catalyst has been investigated. The product yields, composition and degradation rate of polyethylene over KFS-16 were compared with those over solid acid catalyst (silica–alumina and zeolite) and non-catalytic thermal degradation. The initial rate of degradation of PE over KFS-16, which possesses no acid sites was as fast as that over silica–alumina (SA-1) and the yield of liquid products was higher. The composition of the liquid products of degradation over KFS-16 was different from that over SA-1 and similar to that of non-catalytic thermal degradation. SA-1 catalyst deactivated very rapidly due to coke deposition, whereas KFS-16 deactivated much more slowly. These findings over mesoporous silica suggest that the mesopores surrounded by the silica sheet may act as a flask for storing radical species for a long time and then long-lived radicals accelerate the degradation of plastics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.