Abstract

Clothianidin served as the model pollutant to investigate the performance and mechanism of pollutant removal by dielectric barrier discharge plasma (DBD) combined with the titanium dioxide-reduced graphene oxide (rGO-TiO2) composite catalyst. In this study, different ratios of titanium dioxide-graphene catalysts were loaded onto honeycomb ceramic plates via the sol-gel method, and the modified catalytic ceramic plates were characterized by XRD, SEM, FTIR, DRS, and energy dispersive X-ray. The results suggested that the rGO-TiO2 was well loaded on the surface of the honeycomb ceramic plates. According to the results of the characterization experiments and the degradation of the clothianidin solution with different proportions of the catalyst, 8wt% rGO-TiO2 was selected as the optimum ratio for degradation. Clothianidin degradation efficiency was significantly influenced by input power, clothianidin concentration, pH value, liquid conductivity, free radical quencher. Finally, six degradation products of clothianidin were identified by HPLC-MS, and the possible transformation pathways of clothianidin degradation were identified. Graphical abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.