Abstract

A novel magnetic nickel ferrite (NiFe2O4) nanosphere was prepared by hydrothermal treatment and used for catalyzing the hydrocracking of an extraction residue from Zhunnan lignite (ZL) to produce arenes in a high yield. The dual regulation of raising temperature and reducing hydrogen pressure effectively limits the type of generated active hydrogen species, while the synergic transfer of H···H and H· over NiFe2O4 facilitates the in situ cleavage of >CH–O– bridged bonds. After introducing NiFe2O4, the amplification in the soluble portion (SP) yield is 9.8%. In addition, the relative content of arenes increases from 35.3 to 49.6%, while that of arenols decreases from 35.9 to 23.3%. The analysis with a quadrupole exactive orbitrap mass spectrometer further confirmed that NiFe2O4 has the ability to degrade the high-heteroatom (HA)-number species to the low-HA-number species in situ. Therefore, the easily recoverable NiFe2O4 is effective for catalytically hydrocracking ZL and upgrading the derived SPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.