Abstract

This study explores catalytic decomposition of phosphine (PH3) using iron group metals (Co, Ni) and metal oxides (Fe2O3, Co(3)O4, NiO) supported on carbon nanotubes (CNTs). The catalysts are synthesized by means of a deposition-precipitation method. The morphology, structure, and composition of the catalysts are characterized using a number of analytical instrumentations, including high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area measurement, and inductively coupled plasma. The activity of the catalysts in the PH3 decomposition reaction is measured and correlated with their surface and structural properties. The characterization results show that phosphidation occurs on the catalyst surface, and the resulting metal phosphides act as an active phase in the PH3 decomposition reaction. Cobalt phosphide, CoP, is formed on Co/CNTs and Co(3)O4/CNTs, whereas iron phosphide, FeP, is formed on Fe2O3/CNTs. In contrast, phosphorus-rich phosphide NiP2 is formed on Ni/CNTs and NiO/CNTs. The initial activities of the catalysts are shown in the following sequence: Ni/CNTs > Co/CNTs > Co(3)O4/CNTs >NiO/CNTs > Fe2O3/CNTs, whereas activities of metal phosphides are shown in the following order: CoP > NiP2 > FeP. The catalytic activity of metal phosphides is attributed to their electronic properties. Cobalt phosphide formed on Co/CNTs and Co(3)O4/CNTs exhibits not only the highest activity, but also long-term stability in the PH3 decomposition reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.