Abstract

The decomposition of different hydrocarbons (CH 4, C 2H 6, C 2H 4, C 2H 2, C 3H 8, and C 3H 6) over Ni (5 wt.%)/SiO 2 catalysts was carried out. The initial rates of decomposition of the hydrocarbons, the kinetic curves of the decomposition and the kinetic curves of the hydrogenation of deposited carbon into methane depended on the types of hydrocarbons. In addition, the catalytic life of the Ni/SiO 2 catalyst was also dependent on the types of hydrocarbons, i.e. the life was longer according to the order, alkanes>alkenes⪢acetylene. The carbons deposited on the catalyst were characterized by SEM and Raman spectroscopy. The appearances of the deposited carbons were different among alkanes, alkenes, and acetylene, i.e. a zigzag fiber structure from methane, and a rolled fiber structure from alkenes and acetylene. From Raman spectra of the deposited carbons, it was found that the degree of graphitization of deposited carbon was higher in the order, alkanes>alkenes>acetylene. These results suggest that the mechanism of decomposition of hydrocarbons and the growth mechanism of carbon fibers on the catalyst were different among alkanes, alkenes and acetylene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.