Abstract
This research describes the heterogeneous catalytic reactions of H2O2 with granular size goethite (α-FeOOH) particles in aqueous solution under various experimental conditions. This is an important reaction for the environment since both H2O2 and iron oxides are common constituents of natural and atmospheric waters. Furthermore, iron oxides function as catalysts in chemical oxidation processes used for treatment of contaminated waters with H2O2. The results of this study demonstrated that the decomposition rate of H2O2 over goethite surface can be described by the second-order kinetic expression −d[H2O2]/dt = k[FeOOH][H2O2], where k = 0.031 M-1 s-1, at pH 7 in the absence of any inorganic or organic chemical species. The apparent reaction rate was dominated by the intrinsic reaction rates on the oxide surfaces rather than the mass transfer rate of H2O2 to the surface. The activation energy of the reaction of H2O2 with the iron oxide surface was determined to be 32.8 kJ/M. The reaction mechanism for the de...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.