Abstract

Catalytic quantities of phenyllithium (PhLi) have been found to initiate novel 5-exo cycloisomerization of a variety of structurally diverse unsaturated organoiodides. The isomerization reaction appears to be a process of broad synthetic utility for the preparation of iodomethyl-substituted five-membered rings. Primary, secondary, tertiary, or aryl iodides tethered to a suitably positioned carbon−carbon π-bond are converted cleanly to their cyclic isomers in good to excellent yield (i.e., 70−90%) by simply allowing a hydrocarbon−MTBE solution of the iodide to stand in the presence of a small quantity of PhLi at an appropriate temperature. The mechanism of the cycloisomerization was found to be substrate dependent: unsaturated aryl and primary alkyl iodides undergo isomerization via a three-step cascade (eqs 1−3) mediated by two reversible lithium−iodine exchange reactions bracketing an irreversible 5-exo cyclization of an unsaturated organolithium; unsaturated secondary and tertiary alkyl iodides apparen...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.