Abstract

The effect of temperature in the catalytic cracking of HDPE over a spent FCC catalyst on the product distribution has been studied using a two-step reaction system. Thermal pyrolysis of HDPE has been carried out in a conical spouted bed reactor and the volatiles formed (mainly waxes) have been fed in-line into a catalytic fixed bed reactor. An increase in the second stage temperature from 450 °C to 550 °C gives way to an enhancement of cracking reactions, achieving full conversion of waxes at 550 °C. At this temperature, gasoline and light olefins are the main product fractions obtained, with a yield of 52 wt% and 28 wt%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.