Abstract

B3LYP/6-31G(d, p) method was used to investigate the catalytic cracking mechanism of biomass tar model compound. Phenol, toluene and benzene were selected as the tar model compounds and CaO was selected as the catalyst. The pathways of tar compound radical absorbed by CaO were determined firstly through comparing enthalpy changes of the absorption, and then Mulliken population changes were analyzed. The results show that the absorption of tar model compound radical and CaO is an exothermic reaction. Formation of C—O—Ca is more easily than that of C—Ca—O and formation of Caromatic—Caromatic—Ca—O is more easily than that of Caromatic—C(O)—Ca—O. The C—C bond Mulliken populations in tar model compound radicals are reduced by 11.9%, 10.5% and 15.5% in the case of a hydrogen atom removed, and those are 15.7%, 14.3% and 16.3% in the case of two hydrogen atoms removed through the absorption of CaO. Catalytic ability of CaO acting on the tar model compound is in an order of phenol>benzene>toluene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.