Abstract

The cycloaddition of CO2 and epoxide catalysed by metalloporphyrins (IL-M(TPP)) and metallocorroles (IL-M(Cor)) containing imidazolium bromide has been studied extensively using density functional theory calculations. Possible mechanisms and catalytic effects of the hydrogen substitution on the imidazolium ring and the metal replacement in the macrocycles have been investigated. The results showed that the synergistic effect between the electrophilic metal centre and the flexible nucleophilic Br- of the bifunctional catalysts was responsible for the high catalytic activity. The coupling reaction of CO2 and ethylene oxide catalysed by IL-Al(Cor) experiences a free energy barrier of 9.7 kcal mol-1 for the rate-determining ring-opening step, which is much lower than ∼20 kcal mol-1 for that catalysed by IL-Zn(TPP). The metallocorrole-based bifunctional catalyst seems quite promising for the catalytic conversion of CO2 into five-membered heterocyclic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.