Abstract

The continuous increase in generation of solid wastes and gradual declining of fossil fuels necessities the development of sustainable conversion technologies. Recent studies have shown that the addition of biomass with hydrogen-rich co-reactants (plastics) altogether enhances the quality of bio-fuels using pyrolysis process. It was observed that red mud (which is produced as by-product in Bayer process) was used as a catalyst in few conversion process. In this study, pyrolysis of biomass (Pterospermum acerifolium) and waste plastic mixture with activated red-mud catalyst was investigated using thermo-gravimetric analysis. The kinetic parameters (activation energy and pre-exponential factor) of this process were determined using distributed activation energy model (DAEM). The DAEM was effectively applied to decide the activation energy (E) and pre-exponential factor (A) for each sample at various conversions during the catalytic co-pyrolysis. The biomass, plastic, biomass–plastic, and biomass–plastic–catalyst exhibited activation energies in the ranges of 78–268, 172–218, 67–307, and 202–292 kJ/mol, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call