Abstract

Co-pyrolysis is one of the best new technologies to utilise excess of plastic waste where the products are generated in the form of oil, gas and char. A selective catalyst is needed to improve the quality of the co-pyrolysis product, in which, oil with low of oxygenated compounds content and high yield of oil are favoured. In this work, Malaysian dolomite was modified by doping with transition metals (Ni/Fe/Ca) at 10 wt% loading using the precipitation method and then compared with a modified commercial catalyst named NiO/ZSM-5 zeolite. Co-pyrolysis was conducted using empty fruit bunch (EFB) and high-density polyethylene (HDPE) at 500 °C operating temperature, 10 cm3/min N2 flow rate, 10 wt% catalyst loading, 1:3 HDPE:EFB ratio and 75 g of feedstock with 60 min of operating time in a stainless-steel fluidised bed reactor. The catalysts were characterised using different analysis methods such as XRD, BET and SEM. The highest gas yield of 68% was obtained by increasing the content of calcium oxide (CaO) in dolomite (in dolomite (CaO/CMD900). For the Fe-doped dolomite (Fe3O4/CMD900), the highest oil yield (10.34 wt%) and a high content oxygenated compounds were obtained. For the Ni-doped dolomite (NiO/CMD900), the oil with the highest hydrocarbon yield (85.32 %) and low oxygenated compound (14.68 %) was obtained. This study confirms that modified dolomite can increase the yield and quality of bio-oil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.